���] ��(sh��)��(j��)�ƌW(xu��)�c��(y��ng)�Å���(sh��)HADOOP��(sh��)��(j��)��(sh��)��(zh��n)��(qu��n)��ָ��(��2��)
-
>
�Q��(zh��n)�Мy(c��)5000�}(���Z(y��)�����c���_(d��))
-
>
ܛ�����ܜy(c��)ԇ.�����c�{(di��o)��(y��u)��(sh��)�`֮·
-
>
��һ�д��aAndroid
-
>
��ȌW(xu��)��(x��)
-
>
Unreal Engine 4�{(l��n)�D��ȫ�W(xu��)��(x��)�̳�
-
>
��������Ӌ(j��)��C(j��)ϵ�y(t��ng)-ԭ��(sh��)��3��
-
>
Word/Excel PPT 2013�k����(y��ng)�Ï����T(m��n)����ͨ-(��ٛ(z��ng)1DVD.���Z(y��)��ҕ�l�̌W(xu��)+�k��ģ��+PDF��ӕ�(sh��))
��(sh��)��(j��)�ƌW(xu��)�c��(y��ng)�Å���(sh��)HADOOP��(sh��)��(j��)��(sh��)��(zh��n)��(qu��n)��ָ��(��2��) ���(qu��n)��Ϣ
- ISBN��9787121370335
- �l�δa��9787121370335 ; 978-7-121-37033-5
- �b����ƽ�b-�zӆ
- ��(c��)��(sh��)�����o(w��)
- ���������o(w��)
- ���ٷ��>>
��(sh��)��(j��)�ƌW(xu��)�c��(y��ng)�Å���(sh��)HADOOP��(sh��)��(j��)��(sh��)��(zh��n)��(qu��n)��ָ��(��2��) ����(sh��)��ɫ
����"��������M��ԭ�������չʾ��^(gu��)����Ԕ��(x��)ָ��(d��o)��(y��ng)���_(k��i)�l(f��)”����������*��Hadoop�������B(t��i)�M���錦(du��)����������Փ�c��(y��ng)�ø߶��ںϵķ�������B��(sh��)��(j��)�ĸ��������g(sh��)����������(y��ng)�á��Լ��(xi��ng)Ŀ�_(k��i)�l(f��)��ȫ��(sh��)�֞���ƪ��*ƪ���(sh��)��(j��)�Ļ�������ͼ��g(sh��)�C�����ڶ�ƪ��ƽ�_(t��i)��c������(y��ng)������(n��i)���O(sh��)Ӌ(j��)Linux��HDFS��MapReduce��Yarn��Hive��HBase��Sqoop��Kafka��Spark��Phoenix��������ƪ�锵(sh��)��(j��)̎���c�(xi��ng)Ŀ�_(k��i)�l(f��)���C���\(y��n)�ø�M���M(j��n)�Ќ�(sh��)�H��(sh��)��(j��)̎������������ʽ��(y��ng)�����Q�������]�㷨���N�۔�(sh��)��(j��)����ϵ�y(t��ng)����
��(sh��)��(j��)�ƌW(xu��)�c��(y��ng)�Å���(sh��)HADOOP��(sh��)��(j��)��(sh��)��(zh��n)��(qu��n)��ָ��(��2��) ��(n��i)�ݺ�(ji��n)��
����"��������M��ԭ�������չʾ��^(gu��)����Ԕ��(x��)ָ��(d��o)��(y��ng)���_(k��i)�l(f��)��������Խ����°�Hadoop�������B(t��i)�M���錦(du��)����������Փ�c��(y��ng)�ø߶��ںϵķ�������B��(sh��)��(j��)�ĸ�����g(sh��)����������(y��ng)�����Լ��(xi��ng)Ŀ�_(k��i)�l(f��)��ȫ��(sh��)�֞���ƪ��ƪ���(sh��)��(j��)�Ļ�������ͼ��g(sh��)�C�����ڶ�ƪ��ƽ�_(t��i)��c������(y��ng)������(n��i)���O(sh��)Ӌ(j��)Linux��HDFS��MapReduce��Yarn��Hive��HBase��Sqoop��Kafka��Spark��Phoenix�ȣ�����ƪ�锵(sh��)��(j��)̎���c�(xi��ng)Ŀ�_(k��i)�l(f��)���C���\(y��n)�ø�M���M(j��n)�Ќ�(sh��)�H��(sh��)��(j��)̎������������ʽ��(y��ng)�����Q�������]�㷨���N�۔�(sh��)��(j��)����ϵ�y(t��ng)����
��(sh��)��(j��)�ƌW(xu��)�c��(y��ng)�Å���(sh��)HADOOP��(sh��)��(j��)��(sh��)��(zh��n)��(qu��n)��ָ��(��2��) Ŀ�
**ƪ ��(sh��)��(j��)�Ļ�������ͼ��g(sh��) 1
��1�� �wՓ 3
1.1 ��(sh��)��(j��)�ĕr(sh��)������ 3
1.1.1 ȫ���(sh��)��(j��)�˳� 3
1.1.2 �҇�(gu��)�Ĵ�(sh��)��(j��)��(zh��n)�� 5
1.2 ��(sh��)��(j��)�Ļ������������ 6
1.2.1 �������� 6
1.2.2 �������� 7
1.3 ��(sh��)��(j��)ϵ�y(t��ng)�ļ��g(sh��)֧���wϵ 7
1.3.1 ���g(sh��)֧���wϵ���[ 7
1.3.2 ��(sh��)��(j��)ϵ�y(t��ng)�IJɼ��� 8
1.3.3 ��(sh��)��(j��)ϵ�y(t��ng)�Ĵ惦(ch��)�� 9
1.3.4 ��(sh��)��(j��)ϵ�y(t��ng)�ķ����� 9
1.3.5 ��(sh��)��(j��)ϵ�y(t��ng)�đ�(y��ng)�Ì� 9
1.3.6 ��(sh��)��(j��)ϵ�y(t��ng)�Ĵ�ֱ�� 10
1.4 ��(sh��)��(j��)�I(l��ng)�����Ҫλ��������Ҫ�� 11
1.4.1 ��ϯ��(sh��)��(j��)�� 11
1.4.2 ��(sh��)��(j��)�ƌW(xu��)�� 11
1.4.3 ��(sh��)��(j��)�_(k��i)�l(f��)���̎� 12
1.4.4 ��(sh��)��(j��)�\(y��n)�S���̎� 13
1.5 �����Y(ji��) 13
��2�� Hadoop��(sh��)��(j��)�P(gu��n)�I���g(sh��) 15
2.1 Hadoop��(sh��)��(j��)��(y��ng)�����B(t��i)ϵ�y(t��ng) 15
2.1.1 �ܘ�(g��u)�Ļ�����Փ 15
2.1.2 Hadoop��(sh��)��(j��)��(y��ng)�����B(t��i)ϵ�y(t��ng)����Ҫ�M�������P(gu��n)ϵ 16
2.2 ��(sh��)��(j��)�ɼ����g(sh��) 19
2.2.1 �Y(ji��)��(g��u)����(sh��)��(j��)�ɼ����� 19
2.2.2 ��־�ռ������c���g(sh��) 20
2.3 ��(sh��)��(j��)�惦(ch��)���g(sh��) 23
2.3.1 ���P(gu��n)���� 23
2.3.2 �ֲ�ʽ�惦(ch��)ϵ�y(t��ng) 27
2.3.3 ��(sh��)��(j��)��(k��)��HBase���c��(sh��)��(j��)�}(c��ng)��(k��)��Hive�� 30
2.4 �ֲ�ʽӋ(j��)���� 35
2.4.1 �x��Ӌ(j��)���� 35
2.4.2 ��(sh��)�r(sh��)��Ӌ(j��)��ƽ�_(t��i) 40
2.5 ��(sh��)��(j��)����ƽ�_(t��i)�c���� 45
2.5.1 �����(sh��)��(j��)�Ĕ�(sh��)��(j��)�ھ��c�������� 45
2.5.2 �C(j��)���W(xu��)��(x��) 49
2.6 �����Y(ji��) 52
�ڶ�ƪ Hadoop��(sh��)��(j��)ƽ�_(t��i)��c������(y��ng)�� 55
��3�� Linux����ϵ�y(t��ng)�c��Ⱥ� 57
3.1 Linux����ϵ�y(t��ng) 57
3.1.1 ���� 57
3.1.2 ���c(di��n) 58
3.1.3 Linux����ϵ�y(t��ng)�ĽM�� 59
3.2 Linux��Ⱥ�Ĵ 62
3.2.1 ���bVMware Workstation 62
3.2.2 ��VMware Workstation Pro 12�ϰ��bLinux��CentOS 7�� 65
3.3 ��Ⱥ������ 77
3.3.1 �O(sh��)�����C(j��)�� 77
3.3.2 �W(w��ng)�j(lu��)�O(sh��)�� 79
3.3.3 �P(gu��n)�]������ 83
3.3.4 ���bJDK 84
3.3.5 ����耵������ 87
3.4 Linux�������� 89
3.5 �����Y(ji��) 96
��4�� HDFS���b�c������(y��ng)�� 97
4.1 HDFS���� 97
4.1.1 ���c(di��n) 97
4.1.2 ��Ҫ�M���c�ܘ�(g��u) 97
4.2 HDFS�ܘ�(g��u)���� 98
4.2.1 ��(sh��)��(j��)�K 98
4.2.2 NameNode 98
4.2.3 DataNode 99
4.2.4 SecondaryNameNode 100
4.2.5 ��(sh��)��(j��)��� 100
4.2.6 ͨ�Ņf(xi��)�h 101
4.2.7 �ɿ��Ա��C 101
4.3 �ļ������^(gu��)�̷��� 101
4.3.1 �x�ļ� 101
4.3.2 ��(xi��)�ļ� 102
4.3.3 �h���ļ� 103
4.4 Hadoop���b�c���� 104
4.4.1 �≺Hadoop���b�� 104
4.4.2 ����Hadoop�h(hu��n)��׃�� 105
4.4.3 ����Yarn�h(hu��n)��׃�� 106
4.4.4 ���ú��ĽM�� 106
4.4.5 �����ļ�ϵ�y(t��ng) 107
4.4.6 ����yarn site.xml�ļ� 108
4.4.7 ����MapReduceӋ(j��)�����ļ� 109
4.4.8 ����Master�е�workers�ļ� 111
4.4.9 ��Master�ϵ�Hadoop��(f��)�Ƶ�Slave 111
4.5 Hadoop��Ⱥ�Ć���(d��ng) 112
4.5.1 ���ò���ϵ�y(t��ng)�ĭh(hu��n)��׃�� 112
4.5.2 ��(chu��ng)��Hadoop��(sh��)��(j��)Ŀ� 113
4.5.3 ��ʽ���ļ�ϵ�y(t��ng) 113
4.5.4 ����(d��ng)���P(gu��n)�]Hadoop 114
4.5.5 �(y��n)�CHadoop�Ƿ�ɹ�����(d��ng) 115
4.6 Hadoop��Ⱥ�Ļ�����(y��ng)�� 117
4.6.1 HDFS�������� 117
4.6.2 ��Hadoop��Ⱥ���\(y��n)�г��� 120
4.7 �����Y(ji��) 122
��5�� MapReduce�cYarn 123
5.1 MapReduce����ĸ��� 123
5.1.1 ��������ģ�� 123
5.1.2 Ӌ(j��)���^(gu��)�̷��� 124
5.2 ��������Yarn 126
5.2.1 Yarn�Ļ����ܘ�(g��u) 126
5.2.2 Yarn�������� 130
5.3 ��Linuxƽ�_(t��i)���bEclipse 130
5.3.1 Eclipse��(ji��n)�� 130
5.3.2 ���b������(d��ng)Eclipse 131
5.4 �_(k��i)�l(f��)MapReduce����Ļ������� 133
5.4.1 ��Eclipse���bHadoop��� 133
5.4.2 WordCount��**��(g��)MapReduce���� 137
5.5 �����Y(ji��) 150
��6�� Hive��HBase���b�c��(y��ng)�� 151
6.1 ��CentOS 7�°��bMySQL 151
6.1.1 ���d���(f��)��MySQL���b�� 151
6.1.2 ��(zh��)��b���� 152
6.1.3 ����(d��ng)MySQL 153
6.1.4 ���MySQL 153
6.1.5 ʹ��MySQL 154
6.1.6 ��(w��n)�}�c��Q�k�� 156
6.2 Hive���b�c��(y��ng)�� 157
6.2.1 ���d���≺Hive���b�� 158
6.2.2 ����Hive 158
6.2.3 ����(d��ng)���(y��n)�CHive 161
6.2.4 Hive�Ļ�����(y��ng)�� 162
6.3 ZooKeeper��Ⱥ���b 163
6.3.1 ZooKeeper��(ji��n)�� 163
6.3.2 ���bZooKeeper 164
6.3.3 ����ZooKeeper 165
6.3.4 ����(d��ng)�͜y(c��)ԇ 166
6.4 HBase���b�c��(y��ng)�� 168
6.4.1 �≺�����bHBase 168
6.4.2 ����HBase 169
6.4.3 ����(d��ng)���(y��n)�CHBase 171
6.4.4 HBase�Ļ�����(y��ng)�� 173
6.4.5 HBase��(y��ng)���г�Ҋ(ji��n)��(w��n)�}�����Q�k�� 175
6.5 �����Y(ji��) 176
��7�� Sqoop��Kafka���b�c��(y��ng)�� 177
7.1 ���b����Sqoop 177
7.1.1 ���d���(f��)��Sqoop���b�� 177
7.1.2 �≺�����bSqoop 177
7.1.3 ����Sqoop 178
7.1.4 ����(d��ng)���(y��n)�CSqoop 180
7.1.5 �y(c��)ԇSqoop�cMySQL���B�� 180
7.2 ���b����Kafka��Ⱥ 182
7.2.1 ���d���(f��)��Kafka���b�� 182
7.2.2 �≺�sKafka���b�� 182
7.2.3 ����Kafka��Ⱥ 183
7.2.4 Kafka�ij�����(y��ng)�� 184
7.3 �����Y(ji��) 188
��8�� Spark��Ⱥ�İ��b�c�_(k��i)�l(f��)�h(hu��n)�������� 189
8.1 ��������Spark 189
8.1.1 Spark��ϵ�y(t��ng)�ܘ�(g��u) 189
8.1.2 Spark���P(gu��n)�I���� 191
8.2 Scala���b�c���� 193
8.2.1 ���dScala���b�� 194
8.2.2 ���bScala 194
8.2.3 ����(d��ng)����(y��ng)��Scala 195
8.3 Spark��Ⱥ�İ��b�c���� 195
8.3.1 ���bģʽ 195
8.3.2 Spark���b 196
8.3.3 ����(d��ng)���(y��n)�CSpark 198
8.3.4 ���c(di��n)�f(shu��)�� 202
8.4 IDEA�_(k��i)�l(f��)�h(hu��n)�����b�c���� 203
8.4.1 IDEA��(ji��n)�� 203
8.4.2 IDEA���b 204
8.4.3 IDEA������ 205
8.5 �����Y(ji��) 208
��9�� Spark��(y��ng)�û��A(ch��) 209
9.1 Spark��(y��ng)�ó�����\(y��n)��ģʽ 209
9.1.1 Spark on Yarn-cluster- 209
9.1.2 Spark on Yarn-client 210
9.2 Spark�đ�(y��ng)���O(sh��)Ӌ(j��) 211
9.2.1 �ֲ�ʽ����A���� 211
9.2.2 ����Spark MLlib���J���L(f��ng)�U(xi��n)�A(y��)�y(c��) 226
9.3 �����Y(ji��) 242
����ƪ ��(sh��)��(j��)̎���c�(xi��ng)Ŀ�_(k��i)�l(f��) 243
��10�� ����ʽ��(sh��)��(j��)̎�� 245
10.1 ��(sh��)��(j��)�A(y��)̎�� 245
10.1.1 �鿴��(sh��)��(j��) 245
10.1.2 ��(sh��)��(j��)�U(ku��)չ 247
10.1.3 ��(sh��)��(j��)�^(gu��)�V 247
10.1.4 ��(sh��)��(j��)�ς� 248
10.2 ��(chu��ng)����(sh��)��(j��)�}(c��ng)��(k��) 249
10.2.1 ��(chu��ng)��Hive��(sh��)��(j��)�}(c��ng)��(k��)�Ļ������� 249
10.2.2 ��(chu��ng)��Hive�օ^(q��)�� 251
10.3 ��(sh��)��(j��)���� 253
10.3.1 �����y(t��ng)Ӌ(j��) 253
10.3.2 �Ñ��О���� 254
10.3.3 ��(sh��)�r(sh��)��(sh��)��(j��) 256
10.4 �����Y(ji��) 256
��11�� �f(xi��)ͬ�^(gu��)�V���]ϵ�y(t��ng) 257
11.1 ���]�㷨���� 257
11.1.1 �����˿ڽy(t��ng)Ӌ(j��)�W(xu��)�����] 257
11.1.2 ���ڃ�(n��i)�ݵ����] 258
11.1.3 �f(xi��)ͬ�^(gu��)�V���] 258
11.2 �f(xi��)ͬ�^(gu��)�V���]�㷨���� 259
11.2.1 �����Ñ��ąf(xi��)ͬ�^(gu��)�V���] 259
11.2.2 ������Ʒ�ąf(xi��)ͬ�^(gu��)�V���] 261
11.3 Spark MLlib���]�㷨��(y��ng)�� 262
11.3.1 ALS�㷨ԭ�� 262
11.3.2 ALS�đ�(y��ng)���O(sh��)Ӌ(j��) 264
11.4 �����Y(ji��) 277
��12�� �N�۔�(sh��)��(j��)����ϵ�y(t��ng) 279
12.1 ��(sh��)��(j��)�ɼ� 279
12.1.1 ��Windowsƽ�_(t��i)���bJDK 279
12.1.2 ��Windowsƽ�_(t��i)���bEclipse 281
12.1.3 ��WebCollector�(xi��ng)Ŀ��(d��o)��Eclipse 282
12.1.4 ��Windowsƽ�_(t��i)���bMySQL 283
12.1.5 �B��JDBC 286
12.1.6 �\(y��n)�����x(ch��ng)���� 286
12.2 ��HBase��Ⱥ�Ϝ�(zh��n)�䔵(sh��)��(j��) 287
12.2.1 ����(sh��)��(j��)��(d��o)��MySQL 287
12.2.2 ��MySQL���еĔ�(sh��)��(j��)��(d��o)��HBase��Ⱥ 289
12.3 ���bPhoenix���g�� 291
12.3.1 Phoenix�ܘ�(g��u) 291
12.3.2 �≺���bPhoenix 293
12.3.3 Phoenix�h(hu��n)������ 293
12.3.4 ʹ��Phoenix 294
12.4 ����Web��ǰ���_(k��i)�l(f��) 298
12.4.1 ��Webǰ���(xi��ng)Ŀ��(d��o)��Eclipse 298
12.4.2 ���bTomcat 300
12.4.3 ��Eclipse������Tomcat 300
12.4.4 ��Web�g�[���в鿴��(zh��)�нY(ji��)�� 303
12.5 �����Y(ji��) 305
�����īI(xi��n)307
��(sh��)��(j��)�ƌW(xu��)�c��(y��ng)�Å���(sh��)HADOOP��(sh��)��(j��)��(sh��)��(zh��n)��(qu��n)��ָ��(��2��) ���ߺ�(ji��n)��
�S�|܊��������������ʿ����ʿ����(d��o)�������I(y��)�����ϴ�W(xu��)Ӌ(j��)��C(j��)��(y��ng)�ü��g(sh��)���ȹ��������ϴ�W(xu��)��Ϣ�ƌW(xu��)�c���̌W(xu��)Ժ���Ї�(gu��)Ӌ(j��)��C(j��)�W(xu��)��(hu��)��(j��)��(hu��)�T��������Ӌ(j��)��C(j��)�ƌW(xu��)�c���g(sh��)���I(y��)�̌W(xu��)ָ��(d��o)ί�T��(hu��)"��(li��n)�W(w��ng)���̌��I(y��)�̌W(xu��)�о����ҽM”�ɆT��
- >
�ҏ�δ��˾�����g
- >
���{����,��Ҫȥ��(2021�°�)
- >
�ƴ��M(j��n)ʿ�
- >
ʷ�W(xu��)�u(p��ng)Փ
- >
�Ї�(gu��)���ڞ��K��߅���^(q��):�vʷ�c��W(xu��)����
- >
��(j��ng)�䳣Մ
- >
Ԋ(sh��)��(j��ng)-����ĸ質
- >
�ؑ���(��i)���z