�x���¹�������ֱ�ӳ���
�gӭ���R�ЈD�W Ո | ע��
> >
ʩ�Dķ-���S�����}���䑪��=STURM-LIOUVILLE PROBLEMS AND THEIR APPLICATION

���] ʩ�Dķ-���S�����}���䑪��=STURM-LIOUVILLE PROBLEMS AND THEIR APPLICATION

�����磺�B�T��W����������r�g��2023-12-01
�_���� ���� 퓔��� 144
�� �D �r:¥35.6(7.4��) ���r  ¥48.0 ��䛺�ɿ������T�r
����ُ��܇ �ղ�
�_������ ȫ�����]
?�½������س���
������Ǖ�����>

ʩ�Dķ-���S�����}���䑪��=STURM-LIOUVILLE PROBLEMS AND THEIR APPLICATION �����Ϣ

  • ISBN��9787561591864
  • �l�δa��9787561591864 ; 978-7-5615-9186-4
  • �b����ƽ�b-�zӆ
  • �Ԕ������o
  • ���������o
  • ���ٷ��>

ʩ�Dķ-���S�����}���䑪��=STURM-LIOUVILLE PROBLEMS AND THEIR APPLICATION ������ɫ

ȫ��ʹ�÷������������Ӵ�����΢�ַ��̡�����ʽ��Ӌ��������ֵӋ��ȶ��W���I���˼�뷽���ͼ��g�ֶΣ��� Sturm-Liouville �����л�������Ҫ���}�M�����о���̽ӑ����Ҫ���ݰ������B�m(x��)Sturm-Liouville ������Փ��Sturm-Liouville ߅ֵ���}�Ĕ�ֵ��ⷽ���Լ����B�m(x��)Sturm-Liouville ߅ֵ���}�ں���Ȳ��еđ����о�������������Ӌ�㔵�W�͑��Ô��W���꼉���������о������x���n�̲ģ�Ҳ�ɹ����P�I�����Ľ̎��Ϳ����ˆT��x������

ʩ�Dķ-���S�����}���䑪��=STURM-LIOUVILLE PROBLEMS AND THEIR APPLICATION ���ݺ���

ȫ��ʹ�÷������������Ӵ�����΢�ַ���������ʽ��Ӌ��������ֵӋ��ȶ��W���I���˼�뷽���ͼ��g�ֶ����� Sturm-Liouville �����л�������Ҫ���}�M�����о���̽ӑ����Ҫ���ݰ������B�m(x��)Sturm-Liouville ������Փ��Sturm-Liouville ߅ֵ���}�Ĕ�ֵ��ⷽ���Լ����B�m(x��)Sturm-Liouville ߅ֵ���}�ں���Ȳ��еđ����о�������������Ӌ�㔵�W�͑��Ô��W���꼉���������о������x���n�̲���Ҳ�ɹ����P�I�����Ľ̎��Ϳ����ˆT��x������

ʩ�Dķ-���S�����}���䑪��=STURM-LIOUVILLE PROBLEMS AND THEIR APPLICATION Ŀ�

Chapter 1 Introduction 1.1 Physical background 1.2 Related results of ordinary differential operators 1.3 Structure of the book Chapter 2 Approximations of eigenvalues and eigenfunctions 2.1 Notation and theoretic results 2.2 Main ideas of the algorithms 2.3 General methods for constructing examples 2.4 Examples with 2-independent BCs 2.5 Examples with 2-dependent BCs 2.6 Oscillations of eigenfunctions for discontinuous Sturm-Liouville problems Chapter 3 Computing the indices of eigenvalues 3.1 Notation and theoretic results 3.2 Algorithm and implementation 3.3 Examples with a positive f 3.4 Examples with an indefinite f 3.5 Examples about ��*(��) and ��(��) Chapter 4 Relations among eigenvalues of Sturm-Liouville problems 4.1 Notation and basic results 4.2 Geometric characterization of ��n 4.3 Interlacing relations among eigenvalues Chapter 5 Third-order eigenparameter dependent differential operators 5.1 Preliminaries 5.2 The Banach space 5.3 Derivative formulas of eigenvalues Chapter 6 Application of Sturm-Liouville problems 6.1 Construction and stability of Riesz bases 6.2 Eigenvalue problems of internal solitary waves Appendix A Fundamentals Sturm-Liouville problems A.1 Classes of Sturm-Liouville problems A.2 Characteristic function Appendix B Thomson-Haskell method Appendix C First-order linear differential equations C.1 Existence and uniqueness of a solution C.2 Rank of a solution and variation of parameters C.3 Continuous dependence of solution on the problem References
��Ʒ�uՓ(0�l)
���o�uՓ����
�������]
��݋���]
����픲�
�ЈD�W
�ھ��ͷ�